## Chapter 7

## Estimates and Sample Sizes

## 7-1 Overview

7-2 Estimating a Population Proportion
7-3 Estimating a Population Mean: $\sigma$ Known
7-4 Estimating a Population Mean: $\sigma$ Not Known
7-5 Estimating a Population Variance

Copyright © 2004 Pearson Education, Inc.

## Overview

This chapter presents the beginning of inferential statistics.
3) We introduce methods for estimating values of these important population parameters: proportions, means, and variances.
4) We also present methods for determining sample sizes necessary to estimate those parameters.

Chapter index

$$
p=\quad \text { population proportion }
$$



$$
\begin{aligned}
& \hat{\boldsymbol{p}}=\frac{x}{n} \quad \begin{array}{l}
\text { sample proportion } \\
\text { of } x \text { successes in a sample of size } n \\
\text { (pronounced } \\
\text { 'p-hat') }
\end{array} \\
& \hat{q}=1=\hat{p}=\frac{\text { sample proportion }}{\hat{q}} \begin{array}{c}
\text { of failures in a sample size of } n \\
\text { Copyright © 2004 Pearson Education, Inc. }
\end{array} \\
& \hline
\end{aligned}
$$

## Overview

This chapter presents the beginning of inferential statistics.
The two major applications of inferential statistics involve the use of sample data to

1) estimate the value of a population parameter, and
2) test some claim (or hypothesis) about a population.

## Assumptions

1. The sample is a simple random sample.
2. The conditions for the binomial distribution are satisfied (See Section 5-3.)
3. The normal distribution can be used to approximate the distribution of sample proportions because $n p \geq 5$ and $n q \geq 5$ are both satisfied.

## Definition

Point Estimate

* A point estimate is a single value (or point) used to approximate a population parameter.


## Definition

## Slide 8

Example:In the Chapter Problem, we noted that 829 adult Minnesotans were surveyed, and $51 \%$ of them are opposed to the use of the photo-cop for issuing traffic tickets. Using these survey results, find the best point estimate of the proportion of all adult Minnesotans opposed to photo-cop use.

Because the sample proportion is the best point estimate of the population proportion, we conclude that the best point estimate of $p$ is 0.51 . When using the survey results to estimate the percentage of all adult Minnesotans that are opposed to photo-cop use, our best estimate is 51\%.

## Definition

Slide

## Confidence Interval

* A confidence interval (or interval estimate) is a range (or an interval) of values used to estimate the true value of a population parameter. A confidence interval is sometimes abbreviated as CI .


## Definition

## Confidence Interval

$\%$ The confidence level is also called the degree of confidence, or the confidence coefficient.

## Definition

* A confidence level is the probability 1- $\alpha$ (often expressed as the equivalent percentage value) that is the proportion of times that the confidence interval actually does contain the population parameter, assuming that the estimation process is repeated a large number of times.

$$
\text { This is usually }\left\{\begin{array}{l}
90 \% \longleftrightarrow \alpha=10 \% \\
95 \% \longleftrightarrow \alpha=5 \% \\
99 \% \longleftrightarrow \alpha=1 \%
\end{array}\right.
$$

Copyright © 2004 Pearson Education, Inc.


## Critical Values

1. We know from Section 5-6 that under certain conditions, the sampling distribution of sample proportions can be approximated by a normal distribution, as in Figure 6-2.
2. Sample proportions have a relatively small chance (with probability denoted by $\alpha$ ) of falling in one of the red tails of Figure 6-2.
*3. Denoting the area of each shaded tail by $\alpha / 2$, we see that there is a total probability of $\alpha$ that a sample proportion will fall in either of the two red tails.


Figure 6-2
Copyright © 2004 Pearson Education, Inc.

## Definition

## Critical Value

* A critical value is the number on the borderline separating sample statistics that are likely to occur from those that are unlikely to occur. The number $z_{\alpha / 2}$ is a critical value that is a $z$ score with the property that it separates an area of $\alpha / 2$ in the right tail of the standard normal distribution. (See Figure 6-2).


## Critical Values

*4. By the rule of complements (from Chapter 3), there is a probability of $1-\alpha$ that a sample proportion will fall within the inner region of Figure 6-2.

5 . The $z$ score separating the right-tail is commonly denoted by $z_{\alpha / 2}$, and is referred to as a critical value because it is on the borderline separating sample proportions that are likely to occur from those that are unlikely to occur.

## Notation for Critical Value

The critical value $z_{\alpha / 2}$ is the positive $z$ value that is at the vertical boundary separating an area of $\alpha / 2$ in the right tail of the standard normal distribution. (The value of $-\mathrm{z}_{\alpha 2}$ is at the vertical boundary for the area of $\alpha / 2$ in the left tail). The subscript $\alpha / 2$ is simply a reminder that the $z$ score separates an area of $\alpha / 2$ in the right tail of the standard normal distribution.



## Definition

When data from a simple random sample are used to estimate a population proportion $p$, the margin of error, denoted by $E$, is the maximum likely (with probability $1-\alpha$ ) difference between the observed proportion $\hat{p}$ and the true value of the population proportion $p$.


## Confidence Interval for Slide 22 Population Proportion

 $\hat{p}-E<p<\hat{p}^{+} E$where
$E=Z_{\alpha / 2} \sqrt{\frac{\hat{p} \hat{q}}{n}}$

Confidence Interval for Population Proportion $\hat{p}-E<p<\hat{p}+E$
$\hat{p} \pm E$
$(\hat{p}-E, \hat{p}+E)$

Round-Off Rule for
Confidence Interval Estimates of $p$

## Round the confidence interval limits to

 three significant digits.
## Procedure for Constructing <br> a Confidence Interval for $p$

* 1. Verify that the required assumptions are satisfied. (The sample is a simple random sample, the conditions for the binomial distribution are satisfied, and the normal distribution can be used to approximate the distribution of sample proportions because $n p \geq$ 5 , and $n q \geq 5$ are both satisfied).
$\%$ 2. Refer to Table A-2 and find the critical value $z_{\alpha 2}$ that corresponds to the desired confidence level.
*3. Evaluate the margin of error $E=$

$$
\sqrt{\frac{\hat{p} \hat{q}}{n}}
$$

Copyright © 2004 Pearson Education, Inc

## 

 - 2




Example:In the Chapter Problem, we noted that 829 adult Minnesotans were surveyed, and $51 \%$ of them are opposed to the use of the photo-cop for issuing traffic tickets. Use these survey results.
c) Based on the results, can we safely conclude that the majority of adult Minnesotans oppose use of the photo-cop?
Based on the survey results, we are $95 \%$ confident that the limits of $47.6 \%$ and $54.4 \%$ contain the true percentage of adult
Minnesotans opposed to the photo-cop. The percentage of opposed adult Minnesotans is likely to be any value between 47.6\% and $54.4 \%$. However, a majority requires a percentage greater than $50 \%$, so we cannot safely conclude that the majority is opposed (because the entire confidence interval is not greater than $\mathbf{5 0 \%}$ ).

$$
\begin{aligned}
& \text { Determining Sample Size } \\
& \begin{aligned}
& E= Z_{\alpha / 2} \sqrt{\frac{\hat{p} \hat{q}}{n}} \\
& \\
& \boldsymbol{n}= \frac{(\text { solve for } n \text { by algebra) }}{\left.\mathbf{Z}_{\alpha / 2}\right)^{2} \hat{p} \hat{q}} \\
& E^{2}
\end{aligned}
\end{aligned}
$$

Copyright © 2004 Pearson Education, Inc

## Sample Size for Estimating Proportion $p$

When an estimate of $\hat{p}$ is known:

$$
\boldsymbol{n}=\frac{(\mathbf{Z} \alpha / 2)^{2} \hat{p} \hat{\mathbf{q}}}{\mathbf{E}^{2}} \quad \text { Formulat } 6-2
$$

When no estimate of $p$ is known:

Example: Suppose a sociologist wants to determine
the current percentage of U.S. households using e-mail.
How many households must be surveyed in order to be
95\% confident that the sample percentage is in error by no
more than four percentage points?

| b) Assume that we have no prior information suggesting a |
| :--- |
| possible value of $\hat{p}$. |


| $n=\frac{\left[z_{\mathrm{a} / 2}\right]^{2} \cdot 0.25}{E^{2}}$ | With no prior information, <br> we need a larger sample to <br> achieve the same results <br> with $95 \%$ confidence and an <br> error of no more than $4 \%$. |
| ---: | :--- |
| $=\frac{(1.96)^{2}(0.25)}{0.04^{2}}$ | $=600.25$ |
| $=601$ households |  |
| Copyright © 2004 Pearson Education, Inc. |  |



## Definitions

## * Estimator

```
is a formula or process for using sample data to estimate a population parameter.
* Estimate
is a specific value or range of values used to approximate a population parameter.
* Point Estimate
is a single value (or point) used to approximate a population parameter.
The sample mean \(\bar{x}\) is the best point estimate of the population mean \(\mu\).
Copyright © 2004 Pearson Education, Inc.
is a formula or process for using sample data to
Estimate
```



## Assumptions

1. The sample is a simple random sample.
2. The value of the population standard deviation $\sigma$ is known.
3. Either or both of these conditions is satisfied: The population is normally distributed or $\boldsymbol{n} \mathbf{> 3 0}$.

## Sample Mean

1. For many populations, the distribution of sample means $\bar{x}$ tends to be more consistent (with less variation) than the distributions of other sample statistics.
2. For all populations, the sample mean $\bar{x}$ is an unbiased estimator of the population mean $\mu$, meaning that the distribution of sample means tends to center about the value of the population mean $\mu$.

## Definition <br> Confidence Interval

As we saw in Section 6-2, a confidence interval is a range (or an interval) of values used to estimate the true value of the population parameter. The confidence level gives us the success rate of the procedure used to construct the confidence interval.

## Definition Level of Confidence

As described in Section 6-2, the confidence level is often expressed as probability $1-\alpha$, where $\alpha$ is the complement of the confidence level.

For a $0.95(95 \%)$ confidence level, $\alpha=0.05$.
For a $0.99(99 \%)$ confidence level, $\alpha=0.01$.

## Definition Margin of Error

is the maximum likely difference observed between sample mean $\bar{x}$ and population mean $\mu$,
and is denoted by $E$.

## Definition <br> Margin of Error <br> $$
E=z_{\alpha / 2} \cdot \frac{\sigma}{\sqrt{n}}
$$ <br> Formula 6-4

Confidence Interval (or Interval Estimate) for Population Mean $\mu$ when $\sigma$ is known

$$
\begin{gathered}
\bar{x}-E<\mu<\bar{x}+E \\
\bar{x} \pm E \\
(\bar{x}-E, \bar{x}+E)
\end{gathered}
$$

$$
\text { Copyright © } 2004 \text { Pearson Education, Inc. }
$$

## Procedure for Constructing a Confidence Interval for $\mu$ when $\sigma$ is known

1. Verify that the required assumptions are met.
2. Find the critical value $Z_{\alpha / 2}$ that corresponds to the desired degree of confidence.
3. Evaluate the margin of error $E=Z_{\alpha / 2} \cdot \sigma / \sqrt{n}$.
4. Find the values of $\bar{X}-E$ and $\bar{x}+E$. Substitute those values in the general format of the confidence interval:

$$
\overline{\boldsymbol{x}}-\boldsymbol{E}<\boldsymbol{\mu}<\overline{\boldsymbol{X}}+\boldsymbol{E}
$$

5. Round using the confidence intervals roundoff rules.

## Round-Off Rule for

 Confidence Intervals
## Used to Estimate $\boldsymbol{\mu}$

1. When using the original set of data, round the confidence interval limits to one more decimal place than used in original set of data.
2. When the original set of data is unknown and only the summary statistics $\{\mathrm{n}, \overline{\mathrm{x}}, \mathrm{s}\}$ are used, round the confidence interval limits to the same number of decimal places used for the sample mean.


Using TI Calculator:
One Population, Large Sample or $\boldsymbol{\sigma}$ known Mean Confidence Interval

1) Select STAT, TESTS, ZInterval.
2) Choose Stats, enter values for Population standard deviation, sample mean and sample size, C-Level, then select calculate.


Copyright © 2004 Pearson Education, Inc


Using TI Calculator:
Slide 52
One Population, Large Sample or $\boldsymbol{\sigma}$ known Mean Confidence Interval
3) Confidence Interval is displayed now.


Example: A study found the body temperatures of 106 healthy adults. The sample mean was 98.2 degrees and the sample standard deviation was 0.62 degrees. Find the margin of error $E$ and the $95 \%$ confidence interval for $\mu$.
$n=106$
$\begin{aligned} & \bar{x}=98.20^{\circ} \\ & \mathrm{s}=0.62^{\circ}\end{aligned} \quad E=z_{\alpha / 2} \bullet \frac{\sigma}{\sqrt{n}}=1.96 \cdot \frac{0.62}{\sqrt{106}}=0.12$
$\alpha=0.05$
$\overline{\boldsymbol{x}}-\boldsymbol{E}<\boldsymbol{\mu}<\overline{\boldsymbol{x}}+\boldsymbol{E}$
$\alpha / 2=0.025$
$98.08^{\circ}<\mu<98.32^{\circ}$
Based on the sample provided, the confidence interval for the
population mean is $98.08^{\circ}<\mu<98.32^{\circ}$. If we were to select many different samples of the same size, $95 \%$ of the confidence intervals would actually contain the population mean $\mu$.

## Round-Off Rule for Sample Size $n$

Slide 54 $\square$

When finding the sample size $n$, if the use of Formula 6-5 does not result in a whole number, always increase the value of $n$ to the next larger whole number.

## Finding the Sample Size $n$ when $\sigma$ is unknown

1. Use the range rule of thumb (see Section 2-5) to estimate the standard deviation as follows: $\sigma \approx$ range/4.
2. Conduct a pilot study by starting the sampling process. Based on the first collection of at least 31 randomly selected sample values, calculate the sample standard deviation $s$ and use it in place of $\sigma$.
3. Estimate the value of $\sigma$ by using the results of some other study that was done earlier.

Copyright © 2004 Pearson Education, Inc
$\sigma$ Not Known
Assumptions
)
2) Either the sample is from a normally distributed population, or $\boldsymbol{n}>30$.
Use Student $t$ distribution

## Definition

## Degrees of Freedom (df)

corresponds to the number of sample values that can vary after certain restrictions have been imposed on all data values

$$
d f=n-1
$$

in this section.

## Student $t$ Distribution

If the distribution of a population is essentially normal, then the distribution of

$$
t=\frac{\bar{x}-\mu}{\frac{s}{\sqrt{n}}}
$$

* is essentially a Student $t$ Distribution for all samples of size $n$, and is used to find critical values denoted by $t_{\alpha \mid 2}$.

Example: Assume that we want to estimate the mean IQ score for the population of statistics professors. How many statistics professors must be randomly selected for IQ tests if we want $95 \%$ confidence that the sample mean is within 2 IQ points of the population mean? Assume that $\sigma$ $=15$, as is found in the general population.
$\alpha=0.05$
$\alpha / 2=0.025$
$z_{\alpha / 2}=1.96$
$E=2$
$\sigma=15$

Chapter index
$n=\left[\frac{1.96 \cdot 15}{2}\right]^{2}=216.09=217$
With a simple random sample of only 217 statistics professors, we will be 95\% confident that the sample mean will be within 2 points of the true population mean $\mu$.


## Confidence Interval for the Estimate of $E$

Based on an Unknown $\sigma$ and a Small Simple Random Sample from a Normally Distributed Population

$$
\bar{x}-E<\mu<\bar{x}+E
$$

where $E=t_{\alpha / 2} \frac{s}{\sqrt{n}}$

## $\boldsymbol{t}_{\alpha / 2}$ found in Table A-3

Copyright © 2004 Pearson Education, Inc

## Procedure for Constructing a Confidence Interval for $\boldsymbol{\mu}$ Stide 62 when $\sigma$ is not known

1. Verify that the required assumptions are met.
2. Using $n-1$ degrees of freedom, refer to Table A3 and find the critical value $t_{\alpha / 2}$ that corresponds to the desired degree of confidence.
3. Evaluate the margin of error $\mathrm{E}=t_{\alpha / 2} \cdot \mathrm{~s} / \sqrt{n}$.
4. Find the values of $\bar{x}-\mathrm{E}$ and $\bar{x}+\mathrm{E}$. Substitute those values in the general format for the confidence interval:

$$
\bar{x}-E<\mu<\bar{x}+E
$$

5. Round the resulting confidence interval limits.

## Important Properties of the Student $t$ Distribution

$\qquad$

1. The Student $t$ distribution is different for different sample sizes (see Figure 6-5 for the cases $n=3$ and $n=12$ ).
2. The Student $t$ distribution has the same general symmetric bell shape as the normal distribution but it reflects the greater variability (with wider distributions) that is expected with small samples.
3. The Student $t$ distribution has a mean of $t=0$ (just as the standard normal distribution has a mean of $z=0$ ).
4. The standard deviation of the Student $t$ distribution varies with the sample size and is greater than 1 (unlike the standard norma distribution, which has a $\sigma=1$ ).
5. As the sample size $\boldsymbol{n}$ gets larger, the Student $\boldsymbol{t}$ distribution gets closer to the normal distribution.
population mean is $98.08^{\circ}<\mu<98.32^{\circ}$. The interval is the same here as in Section 6-2, but in some other cases, the difference would be much greater.

Student $t$ Distributions for

$$
\mathrm{n}=3 \text { and } \mathrm{n}=12
$$

Slide 65


Figure 6-5
Copyright © 2004 Pearson Education, Inc.




Finding the Point Estimate and $E$ from a Confidence Interval

Point estimate of $\mu$ :
$\bar{X}=\underline{(\text { upper confidence limit) }+(\text { lower confidence limit) }}$

Margin of Error:
$E=\underline{\text { (upper confidence limit) }- \text { (lower confidence limit) }}$


## Assumptions

1. The sample is a simple random sample.
2. The population must have normally distributed values (even if the sample is large).

## Properties of the Distribution of the Chi-Square Statistic

1. The chi-square distribution is not symmetric, unlike the normal and Student $t$ distributions.

As the number of degrees of freedom increases, the distribution becomes more symmetric. (continued)


Figure 6-8 Chi-Square Distribution


Figure 6-9 Chi-Square Distribution for $d f=10$ and $d f=20$

Chi-Square Distribution Slide 74

$$
\chi^{2}=\frac{(n-1) s^{2}}{\sigma^{2}} \quad \text { Formula 6-7 }
$$

where
$n=$ sample size
$s^{2}=$ sample variance
$\sigma^{2}=$ population variance

Copyright © 2004 Pearson Education, Inc.

## Properties of the Distribution of the Chi-Square Statistic (continued)

2. The values of chi-square can be zero or positive, but they cannot be negative.
3. The chi-square distribution is different for each number of degrees of freedom, which is $d f=n-1$ in this section. As the number increases, the chisquare distribution approaches a normal distribution.

In Table A-4, each critical value of $\chi^{2}$ corresponds to an area given in the top row of the table, and that area represents the total region located to the right of the critical value.
Example: Find the critical values of $\chi^{2}$ that determine critical regions containing an area of 0.025 in each tail. Assume that the relevant sample size is 10 so that the number of degrees of freedom is $10-1$, or 9 .

$$
\begin{aligned}
\alpha & =0.05 \\
\alpha / 2 & =0.025 \\
1-\alpha / 2 & =0.975
\end{aligned}
$$



## Estimators of $\sigma^{2}$

$$
\text { Slide } 80
$$

The sample variance $s^{2}$ is the best point estimate of the population variance $\sigma^{2}$.

Copyright © 2004 Pearson Education, Inc.
Confidence Interval for the Population Variance $\sigma^{2}$


Procedure for Constructing a

Slide 84 Confidence Interval for $\sigma$ or $\sigma^{2}$

1. Verify that the required assumptions are met.
2. Using $n-1$ degrees of freedom, refer to Table A-4 and find the critical values $\chi^{2}{ }_{R}$ and $\chi_{L}^{2}$ that corresponds to the desired confidence level.
3. Evaluate the upper and lower confidence interval limits using this format of the confidence interval:

$$
\frac{(n-1) s^{2}}{\chi_{R}^{2}}<\sigma^{2}<\frac{(n-1) s^{2}}{\chi_{L}^{2}}
$$

continued

## Confidence Interval for the Population Variance $\sigma^{2}$

 Slide 81 .

Right-tail CV

## Confidence Interval for the Population Variance $\sigma^{2}$



Confidence Interval for the Population Standard Deviation $\sigma$

$$
\sqrt{\frac{(n-1) s^{2}}{\chi_{\mathrm{R}}^{2}}}<\sigma<\sqrt{\frac{(n-1) s^{2}}{\chi_{\mathrm{L}}^{2}}}
$$

Confidence Interval for the
Population Variance $\sigma^{2}$
$\frac{(n-1) s^{2}}{\chi^{2}}<\sigma^{2}<\frac{(n-1) s^{2}}{\chi_{\mathrm{L}}^{2}}$ Left-tail $\mathrm{CV}^{23}$
Right-tail CV
Confidence Interval for the Population Standard Deviation $\sigma$
$\sqrt{\frac{(n-1) s^{2}}{\chi_{\mathrm{R}}^{2}}}<\sigma<\sqrt{\frac{(n-1) s^{2}}{\chi_{\mathrm{L}}^{2}}}$

> Procedure for Constructing a Slide 85 Confidence Interval for $\sigma$ or $\sigma^{2}$
> (continued)
> 4. If a confidence interval estimate of $\sigma$ is desired, take the square root of the upper and lower confidence interval limits and change $\sigma^{2}$ to $\sigma$.
> 5. Round the resulting confidence level limits. If using the original set of data to construct a confidence interval, round the confidence interval limits to one more decimal place than is used for the original set of data. If using the sample standard deviation or variance, round the confidence interval limits to the same number of decimals places.

Example: A study found the body temperatures of 106 healthy adults. The sample mean was 98.2 degrees and the sample standard deviation was 0.62 degrees. Find the $95 \%$ confidence interval for $\sigma$.
$n=106$
$\bar{x}=98.2^{\circ}$
$\mathrm{s}=0.62^{\circ}$
$\alpha=0.05$
$\alpha / 2=0.025$
$1-\alpha / 2=0.975$

$$
\begin{gathered}
\frac{(106-1)(0.62)^{2}}{129.561}<\sigma^{2}<\frac{(106-1)(0.62)^{2}}{74.222} \\
0.31<\sigma^{2}<0.54
\end{gathered}
$$

We are $95 \%$ confident that the limits of $0.56^{\circ} \mathrm{F}$ and $0.74^{\circ} \mathrm{F}$ contain the true value of $\sigma$. We are $95 \%$ confident that the standard deviation of body temperatures of all healthy people is between $0.56^{\circ} \mathrm{F}$ and $0.74^{\circ} \mathrm{F}$. Copyright © 2004 Pearson Education, Inc

|  | Determining Sample Size |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Table 6:2 Sam | Inple Size for $\sigma^{2}$ | Sample Size for |  |  |
|  | To be $95 \%$ confident that $s^{2}$ is within | of the value of $\sigma^{2}$, the sample size $n$ should be at least | To be 95\% confident that $s$ is within | of the value of $\sigma_{\text {, }}$ the sample size $n$ should be at least |  |
|  | 1\% | 77,207 | 1\% | 19,204 |  |
|  | 5\% | 3,148 | 5\% | 767 |  |
|  | 10\% | 805 | 10\% | 191 |  |
|  | 20\% | 210 | 20\% | 47 |  |
|  | 30\% | 97 | 30\% | 20 |  |
|  | 40\% | 56 | 40\% | 11 |  |
|  | 50\% | 37 | 50\% | 7 |  |
|  | To be 99\% confident that $5^{2}$ is within | of the value of $\sigma^{2}$, the sample sizen should be at least | To be 99\% confident that 5 is within | of the value of $\sigma_{\text {, }}$ the sample sire $n$ should be at least |  |
|  | 1\% | 133,448 | 1\% | 33,218 |  |
|  | 5\% | 5,457 | 5\% | 1,335 |  |
|  | 10\% | 1,401 | 10\% | 335 |  |
|  | 20\% | 368 | 20\% | 84 |  |
|  | 30\% | 171 | 30\% | 37 |  |
|  | 40\% | 100 | 40\% | 21 |  |
|  | 50\% | 67 | 50\% | 13 |  |
|  | Copyright © 2004 Pearson Education, Inc. |  |  |  |  |

